Ex: 2.29

For the input voltage step of magnitude V the output waveform will still be given by the exponential waveform of equation(2.40)

If
$$w_t V \leq SR$$

That is
$$V \le \frac{SR}{w_t} \Rightarrow V \le \frac{SR}{2\pi f_t}$$

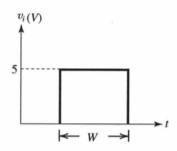
 $V \le 0.16 \text{ V}$, thus, the largest possible input voltage step is 0.16 V.

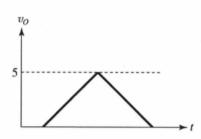
From Appendix F we know that the 10% to 90% rise time of the output waveform of the form of

equation (2.40) is
$$t_r \simeq 2.2 \frac{1}{w_r}$$

Thus, $t_r \simeq 0.35 \,\mu s$

If an input step of amplitude 1.6 V (10 times as large compared to the previous case) is applied, the the output is slew-rate limited and is linearly rising with a slope equal to the slew-rate, as shown in the following figure.


2.123


Op Amp slew rate = $10 \text{ v/}\mu\text{s}$ For the input pulse to rise 5V_1 , it will take

$$\frac{5}{10} = 0.5 \ \mu s$$

 \therefore The minimum pulse width = $W = 0.5 \mu s$

The output will be a triangular with 10 V/ μs slew rate

2.126

$$v_o = 10 \sin \omega t \Rightarrow \frac{dv_o}{dt} = 10 \omega \cos \omega t \Rightarrow \frac{dv_o}{dt}\Big|_{max}$$

= 10 \omega

The highest frequency at which this output is possible is that for which:

$$\frac{\mathrm{d}v_o}{\mathrm{dt}}\bigg|_{\mathrm{max}} = \mathrm{SR} \Rightarrow 10\omega_{\mathrm{max}} = 60 \times 10^{+6} \Rightarrow \omega_{\mathrm{max}}$$
$$= 6 \times 10^{5}$$
$$\Rightarrow f_{\mathrm{max}} = 45.5 \mathrm{~kHz}$$